Lasercom for Intra-Nanosat Communication (LINC), Phase I

Completed Technology Project (2012 - 2012)

Project Introduction

Earth orbiting spacecraft, deep space science missions, and unmanned aerial vehicles are facing increasing data volumes to be transmitted to ground stations. Laser Communication (Laser Com) terminals are necessary to handle the demand. Additionally, nano class satellites have emerged as desirable platforms due to their low cost, shorter build, and multitude of available launch configurations. Honeybee Robotics Spacecraft Mechanisms Corp. proposes to develop a LaserCom terminal for a small satellite. We will focus the effort within the constraints of a 6U CubeSat. The Phase 1 effort will define a lasercom system architecture which satisfies the challenging packaging and resource constraints evident with nanosatellites. We will leverage our nano-sat based attitude control actuator technology (TORC) to ameliorate packaging challenges for the pointing mechanisms. Analysis and simulation of the optical subsystem will enable design and down-selection of components to a system which can provide the necessary line-of-sight stability and link margin to maintain a 2Gb/sec link with less than 10-6 BER. A prototype fine pointing mechanism will be built and tested to demonstrate proof-of-concept of a miniaturized pointing subsystem. Ultimately a lasercom system will be defined to be built in Phase II to arrive at a minimum TRL6 during the Phase 2 effort.

Primary U.S. Work Locations and Key Partners

Lasercom for Intra-Nanosat Communication (LINC), Phase I

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	-
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	:
Technology Areas	:
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Lasercom for Intra-Nanosat Communication (LINC), Phase I

Completed Technology Project (2012 - 2012)

Organizations Performing Work	Role	Туре	Location
Honeybee Robotics,	Lead	Industry	Pasadena,
Ltd.	Organization		California
Ames Research Center(ARC)	Supporting	NASA	Moffett Field,
	Organization	Center	California

Primary U.S. Work Locations	
California	New York

Project Transitions

0

February 2012: Project Start

August 2012: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138246)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Honeybee Robotics, Ltd.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

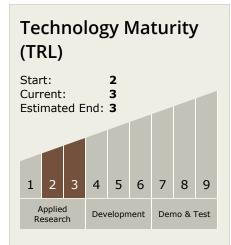
Program Manager:

Carlos Torrez

Principal Investigator:

Erik Mumm

Co-Investigator:


Erik Mumm

Lasercom for Intra-Nanosat Communication (LINC), Phase I

Completed Technology Project (2012 - 2012)

Technology Areas

Primary:

 TX05 Communications, Navigation, and Orbital Debris Tracking and Characterization Systems
 TX05.1 Optical Communications
 TX05.1.4 Pointing, Acquisition and Tracking (PAT)

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

